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Abstract—Consideration is given to laminar free convection from a vertical non-isothermal right
circular cone. Similar solutions for the boundary-layer equations are found to exist when the surface
temperature varies as x”. Numerical solutions of the transformed boundary-layer equations are
presented for Prandtl number 0-7, both for the isothermal and linear temperature distributions. The
heat-transfer resuits of previous analyses for the isothermal cone and an experimental correlation
for laminar free convection are found to be in excellent agreement with the results reported here.
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NOMENCLATURE
dimensionless constants defined by

as, a,, equations (16-19);

2
J(),

F(y),
g(x),

g,
G,

Grx,
Gry,
Gr;,
h,

h,

k,

L,

dimensionless constant of integra-
tion;
dimensionless function defined by
equation (12);
dimensionless dependent variable
defined by equation (12);
dimensionless function defined by
equation (11);
acceleration due to gravity, (ft?/h);
Grashof number,
8BL? cos y (T — Tx)/v%;

Grashof number based on X,
ZBX3 cosy (T — Tw)/v?;
Grashof number based on L,
ZBL? cos y (Ty — T},
Grashof number based on L,
gBL2 (T — To)/v*;
local heat-transfer coefficient,

q/(Tw — T)(Btu/ft2 h degF);
average heat-transfer coefficient,

Q/nL?  siny (Ty — Tw),
(Btu/ft2 h degF);
thermal conductivity of fluid,
(Btu/h ft degF);

cone slant height, (ft);
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n,

NuXa
Nuy,

dimensionless exponent defined by
equation (25);

local Nusselt number, AX/k;
average Nusselt number, AL/k;
Prandtl number, v/a;

local heat-transfer rate per unit
area, (Btu/ft? h);

over-all heat-transfer rate, (Btu/h);
dimensionless local cone radius;
local cone radius, (ft);
temperature, (degF);

dimensionless velocity component
in X-direction;

velocity component in X-direction,
(ft/h);

dimensionless velocity component
in Y-direction;

velocity component in Y-direction,
(ft/h);

dimensionless co-ordinate along a
cone ray; .

co-ordinate along a cone ray, (ft);
dimensionless co-ordinate normal
to cone surface;

co-ordinate normal to cone surface,

(ft).

Greek symbols

a,
B,

s
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thermal diffusivity of fluid, (ft3/h);
coefficient of thermal expansion of
fluid, — (0p/pdT)p, (degR™);

cone apex half-angle;
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. dimensionless independent variable
defined by equation (11);
0, dimensionless temperature variable,
(T — T)[(Ty - Tx):
o, density of fluid, (1b/ft?):
v, kinematic viscosity of fluid (ft/h):
b, dimensionless stream function.
Subscripts
o”, ambient conditions:
W, wall conditions:
0, conditions at X =- L.
INTRODUCTION

RECENTLY, theoretical studies of laminar free
convection have received wider attention, especi-
ally in cases of non-uniform surface-temperature
distributions. Because of the difficulty in solving
the boundary-layer equations, relatively few
exact solutions exist. However, those which have
been reported are derived using the technique of
similar solutions. The similarity method is based
on the hypothesis that velocity and temperature
profiles at two different axial locations differ at
most by a co-ordinate-dependent scale factor.
By introducing a new independent variable
consisting of a combination of the original
variables, the boundary-layer equations reduce
to a set of ordinary differential equations.
Numerical integration of these yields important
boundary-layer characteristics. The importance
of these solutions is quite evident. In addition to
providing results for a specific physical situation
and contributing to a better physical under-
standing of the phenomena, they provide a basis
of comparison for approximate boundary-layer
techniques. The approximate methods, once
verified, can often be used with confidence for
situations in which the similarity method is not
applicable.

Although numerous authors have investigated
laminar free convection for the two-dimensional
situation, this paper is concerned primarily with
results for axisymmetric flows. Merk and Prins
[1] developed the general relations for similar
solutions on isothermal axisymmetric forms and
showed that the vertical cone has such a solution.
Approximate boundary-layer techniques were
utilized to arrive at an expression for the
dimensionless heat transfer. Braun er al. [2]
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contributed two more isothermal axisymmetric
bodies for which similar solutions exist, and
used an integral method to provide heat-transfer
results for these and the cone over a wide range
of Prandtl number. Results obtained by numeric-
ally integrating the differential equations with
Prandtl number 0-72 were also reported by these
investigators.

In this paper, the similar solutions obtainable
for free convection from the vertical cone are
exhausted. It is shown that similar solutions to
the boundary-layer equations for a cone exist
when the wall-temperature distribution is a
power function of distance along a cone ray.
Results obtained by numerically integrating the
transformed equations for the isothermal and
linear temperature distributions are presented
for Prandtl number 0-7.

ANALYSIS
Laminar free convection on a vertical cone is
governed by the basic conservation laws: mass,
momentum and energy. The boundary-layer
form of the equations for steady, axisymmetric,
non-dissipative, constant-property flow are

&« UR)  &VR)
ex tay 0 M

eU cUooeu
iy T Vey =voyetaBcosy (T —Tw). (2)
¢r e T ;
U@X+ ey “ove 3)

The co-ordinate system, velocity directions, and
gravity orientation are shown in Fig. 1 for the
case of Ty, higher than T. This is the case to
which the present analysis is directed, although
it is clear that upon reversal of the direction of
gravity the results are applicable when T is
lower than T.

As pointed out in [2], several simplifications
have been incorporated into equations (1-3).
Under the assumption that the boundary layer is
thin relative to the local cone radius, the local
radius to a point in the layer has been replaced
with the value at the cone surface, R(X).
Evidently, this condition is not satisfied in the
neighborhood of the cone tip. Further, since the
fluid-density difference, which is the driving force
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‘ GRAVITY

FiG. 1. Physical model and co-ordinates.

for natural convection, has been replaced with
the product B(T — Tw), the equations are
limited to small values of this term for liquids
but arbitrary values for gases, provided the
products of density x viscosity and density %
conductivity are constant across the layer.

Finally, because the pressure gradient across
the boundary layer has been taken as negligible,
the equations are strictly applicable to cones of
small apex angles.

Complete definition of the problem requires
specification of the boundary conditions which

are as follows:
} @

Introducing the following dimensionless vari-
ables

U=V=0, T=TuX), Y=0,
U =0, T = Ta, Y = oo.

~

. G *R(X)¥ .
Y=gy = r(x) = o T xsiny,
UL VL
U= —, 0 =—, > (5)
14 v

G ~ gBcosy (T — To)L?

J

where L is the cone slant height, y the cone apex
half-angle and G a Grashof number, equations
(1-3) become

a(ur) | o(vr)

ax T oy =0, ©)
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oG oG 3G
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with boundary conditions

u=uov =0, G=Gulx), ) =
u=>0, G =0,

The continuity equation (6) is identically satis-
fied when a dimensionless stream function ¢ is
introduced; that is

1 &b 1 &b

U=~ -, 0= — - ;.

y = 0.

(10)

If a new independent variable » is defined by

y
== 11
= 200 (11
and corresponding dependent variabies
$(x, y) Glx,y) T—Tw
F T o=, (12
() = ) 6(n) = Culd) T — -, (12)

are introduced into equations (7) and (8), the
investigation of the existence of similar solutions
reduces to determining the functions f(x), g(x)
and Gy(x) such that (7) and (8) are two ordinary
differential equations for F(y) and 6(y). The
functions F'() and 6(y) describe, respectively,
the velocity and temperature-difference distribu-
tions across the boundary layer. The functions
g(x),f (x)/g(x) and Gy represent the growth of
boundary-layer thickness, velocity, and tempera-
ture difference along the wall.

Substitution of equations (11) and (12) into
(7) and (8) yields

F" 4+ aFF" — ayF? +a — 0, (13)
9" 4 Pr(a,F9 — a,F'6) = 0. (14)
The boundary conditions transform to
FF=F=0, 6=10, =0,
T by
F' =0, 6 =0, 7 = 0.

In the above, the prime denotes differentiation
with respect to » and g, to a4 are given by

=52 (. (16)
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=2 g (L) (17)
G 3
aazﬁ”f—, (18)
fg de
a, = G, ax (19)

It is apparent that similar solutions are possible
when a;, a,, a3 and a, are constants. But, since
the conditions embodied in equations (16-19)
exceed the number of unknowns (f, g, Gu), the
constants are not all arbitrary. We note that the
functions f and g can be determined from equa-
tions (16) and (17) and, with these, equation (18)
yields G. The functions so determined must then
satisfy the condition expressed by (19). Follow-
ing this procedure, f, g and G, are found as

1/(@a;—a,)
f=-~c[(2a13 "2) xmm)] 20

o (a;-0) 11/ ey —a,)
¢ = é{(*’ﬁg_,?ﬁ) e x<al—m2>J e

2a, — a,\ Ba—2ay) 1/ (Bay-ay)
Gyp=c a3[(—33~2) x”%"%l)}
(22)

provided 2a; = a,. A solution does not exist for
2a; = a,. The additional parameter ¢ is an
integration constant. In the above ay, a,, a; and
¢ are arbitrary subject to the previously men-
tioned restriction and a, is related to a, and a,
by the relation

ay = 2 23)

As is customary in free-convection analyses
we arbitrarily choose a; equal to positive unity
and let

gBcos y (Ty — To) LP
o= BBC Y(V;’ =L G,

24

where T, is the surface temperature at the cone
base (X = L). For convenience, a new constant
n defined by

’la2 lal,
2&1 - ag

(25)

is introduced. Since a,/a, is directly related to »
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by ay/a, = (n -+ T)/2(n + 1) it is convenient to let
(arbitrarily)
n+7 n + 1
a="" a="0,(6)

which satisfies the restriction on a; and a,.
According to equation (23) a, has the value n.
For this selection of constants, equations (20~
22) simplify to

f.__: Gr}‘,’é X(3+3l)f’4 (27)
g == Gry ' xa-m (28)
Gw == GrLX"’. (29}

It is evident from the last of equations (5),
equation (24) and equation (29) that similar
solutions are possible for laminar free convection
from a non-isothermal cone when the wall-to-
environment temperature difference is a power
function of the distance from the cone apex: i.e.

To—To_ .0
To—Tw 7
where »n can be zero or take on any real value.
However, it is necessary to restrict n to values
not less than zero in order to keep the surface-
temperature distribution finite,
The transformation variables now become

(30)

n = G,.1L,'4y/x(1~n)/4 \J’
. ¥ |
F(n) = 7 Gr”“ NEFEIe L (31)
|
(T — Tw) !
) = o 2
() T = Ty j

while the dimensionless velocities are
0= Gr}fz x@+my2 fr \i
v = }Gr}f“ x{n-1)/4 S {32)
<[ = mF — (7 + mFL
In terms of n, equations (13) and (14) are
T+n 1 +

Fn! _+_ 4 FF” U, F'2 + g = 0 (33)
7+n
0" + Pr ( g P~ nF’@) =0. (34

Equations (33) and (34) with boundary condi-
tions (15) completely define the mathematical
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problem of laminar free convection on a vertical
cone with a power-function surface-temperature
distribution within the framework of the simpli-
fying assumptions. The equations contain the
parameters; Prandtl number and ». The para-
meter 7 is determined by the specification of the
surface-temperature distribution in the form of

equation (30). A few of the more important cases -

obtained by different choices of n are given
below.

Isothermal cone (n = 0)

The transformed equations for free convec-
tion from an isothermal cone are obtained from
equations (33) and (34) with n = 0. The equa-
tions are

F" 4+ 1FF'—3F?+6=0 &(5)
6+ [ PrFY =0 |

while the transformation variable and dimension-
less velocities simplify to

n= Gr}f‘ x~1/4y I
u=Grl*x'2 F

v =1Gri* xV4(nF' —TF).

(36)

The isothermal cone was first shown, by Merk
and Prins [1], to be a body yielding similar fiows.
A different choice of constants was selected by
these investigators resulting in an analogous set
of equations.

Linear surface-temperature distribution (n = 1)

For a vertical cone with a linear surface-
temperature distribution, equations (33) and
(34) reduce to

F'" 4+ 2FF"— F?24+8=0
(37)
¢’ + PrQQF¢' — F'8) = 0.
The similarity variable and velocities are given
by
n = Grll4 1
(38)
u=Gr*xF', v=—2Gri*F.

It is interesting to note that for this case the
similarity variable is independent of x.
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Specified wall heat flux

Other important values of n can be obtained
by calculating the local surface heat flux.
Utilizing the Fourier-Biot law of heat conduc-
tion, the surface flux is given as follows:
oT
oY |y=o

KT, —

g=—k

Tw)
L

From the above it is evident that different sur-
face flux distributions can be obtained by
specifying the value of (5n — 1)/4. For example,
choosing n = 1/5 gives a constant heat flux
surface condition for which the transformed
equations are

F"'+§FF"—§Fl2+0:0
0" + Pr(y F§ — L F'8) =0

Gr 1/4 x(5n—1)/4 & (0) (39)

1
b (40)
J

The similarity variable and the dimensionless
velocities for the case of constant surface heat
flux are

n=Gritx15y
u=Gr*x35 F'

b = 1 Grif* x5 (nF' — 9F).

L (41)

Sparrow and Gregg [3] have dealt with the case
of uniform surface heat flux for the vertical flat
plate and have shown that the resulting surface
temperature also varies with the one-fifth power
of the distance from the leading edge.

SOLUTION OF EQUATIONS

The reduced equations for the isothermal cone
(35) and the equations for the cone with a linear
surface-temperature distribution (37) have been
solved for Prandtl number 0-7 using numerical
techniques. The numerical method, fourth-order
Runge-Kutta forward integration, requires that
at the starting point of the integration the func-
tion and its first two derivatives be specified for
a third-order equation; whereas, for a second-
order equation, the function and its first deriva-
tive must be prescribed. As is seen from the
boundary conditions of equation (15), F”(0) and
#'(0) are not known. Thus, the computational
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problem reduces to a systematic search for the
values of these derivatives which lead to solu-
tions of the equations satisfying the end condi-
tions F'(«) == 0 and 6(cc) = 0. The details of
the integration formulas and an iterative tech-
nique for determining the unknown initial
conditions are described in [4].

The initial value results of the numerical
integrations are believed to be correct to at least
five digits. In both cases, the integration was not
considered satisfactory until the initial values
F(0) and ¢'(0) did not change in at least the
sixth digit upon correction by the previously
mentioned technique. This fact, plus(a) optimiza-
tion of the integration interval size, (b) a check
of previously obtained results for the rotating
disk [5], and (c) the estimated errors inherent in
the integration method, insures that five digits
is a conservative estimate of the accuracy of the
initial values F”(0) and 6'(0). Numerical calcu-
lations were performed on a Datatron 204
digital computer. Short tables of the functions
F, F', F”, 6, and ¢ are given in the Appendix.

RESULTS

Local heat transfer

The most important result of practical interest
is the heat transfer. It is customary to express
heat-transfer results in terms of heat-transfer co-
efficients and Nusselt numbers. A local heat-
transfer coefficient and local Nusselt number
may be defined as follows

hX
h=p e N

Ty — T
Utilizing the previous result for the local heat
flux (39) we find

(42)

Nuy = — Gri}* §'(0), (43)
where Gry is a Grashof number based on length
X and the local wall-to-environment temperature
difference (T — T'w).

Using the integration results for Prandtl
number 0-7, the dimensionless heat transfer for
the isothermal cone is

Nuy == 045110 Gr/, (44)

while for a linear surface-temperature distribu-
tion we obtain

R. G. HERING and R. J.
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Nuy = 0-56699 Grf*. (45)

Merk and Prins [1] integrated the equations
for the isothermal vertical cone using an integral
method. Their result when evaluated at Prandtl
number 0-7 is in excellent agreement with that
found here. Their coefficient in equation (44)
was lower by less than -6 per cent. The numerical
integration result of [2] for Prandtl number 0-72
is less than 1-2 per cent greater than that found
here when their results are transformed to the
definitions of this paper. Braun es a/. [2] also
noted that, although the method of Saunders
used by Merk and Prins gave good agreement for
Prandtl number of order unity, it was not reliable
at extremes of Prandtl number.

Over-all heat transfer

The over-all heat transfer Q is obtained by
integrating equation (39) over the cone lateral
surface area. So

Q = 27L%siny [1gx dx, (46)

where L is the cone slant height. Introducing the
following definitions for a mean heat-transfer
coefficient and Nusselt number:

W 0

hL
= Nujy ==

= ALy (T, — To K @

gives the dimensionless heat-transfer result

N ,, / 8 ) nyrwY
Nuy, = — (Sn q) GO, @)

Upon substituting the appropriate integration
results for Prandtl number 0-7,

Nuyp = 0-51554 Grl/*, (49)
for the isothermal cone and
Nuy, == 0-37799 Gr}* (50)

for the cone with a linear wall-temperature
distribution.

Again the results of [1] show excellent agree-
ment with a coefficient less than 1-3 per cent
lower than that of equation (49). Furthermore,
Jakob and Linke [6] combined the experimental
results of numerous authors for vertical cylinders,
vertical planes, horizontal wires, spheres, and
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blocks in air, water, alcohol and oil, and cor-
related these results for laminar flow with the
following equation:

Nuy, = 0-555 (Gr}, Prti*

where Gry = gB(Ty — Tw)L?¥v. If the gravita-
tional acceleration in the above relation is
interpreted as the component parallel to the
body surface, evaluation of Jakob and Linke’s
expression for Prandil number 07 results in a
numerical coefficient also 1'3 per cent less than
that of equation {49).

Also of interest is that the heat-transfer
results, both local and over-all, for the cone with
the linear surface-temperature distribution devi-
ate considerably from those for the isothermal
cone, In fact, the isothermal-cone results were
20 per cent lower and 36 per cent higher than
the respective local and over-all Nusselt numbers
for the non-isothermal cone. Hence, application
of isothermal heat-transfer relationships in the
presence of non-isothermal temperature distribus
tions can result in considerable error in heat-
transfer calculations.

Velocity and temperature profiles

The tangential velocity component and tem-
perature profiles for both the isothermal and
linear-surface-temperature cases are shown in
Figs. 2 and 3. The profiles exhibit the usual free-
convection shapes. Note that the dimensionless
tangential-flow function for the isothermal cone
attains a maximum 22 per cent greater than that
for the conc with a linear wall-temperature
distribution.

CONCLUSION

It has been shown that similar solustions to the
laminar boundary-layer equations exist for free
convection from a vertical cone when the surface~
temperature distribution is a power function of
the distance from the cone apex. Numetical
solutions of the transformed differential equa-
tions have been presented for the isothermal and
linear surface-temperature distributions with
Prandtl number 0:7. The approximate heat-
transfer results of Merk and Prins for the iso-
thermal cone when evaluated for Prandil
number (-7 were in excellent agreement with
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Fic. 3. Dimensionless temperature profiles (Pr = 0-7),

those found here. The experimental correlation
obtained by Jakob and Linke for the mean
Nusseli number in laminar isothermal free
convection when evaluated on the basis of the
effective gravitational acceleration and Prandit
number (7 gave results within 1-3 per cent of
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the result obtained herein for the isothermal
cone.
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APPENDIX

Integration results for the functions, F, F', F",
6 and ¢’ are given in Tables 1 and 2 below.t The
function values for the isothermal cone are given
in terms of a slightly different argument than
that used in this paper. The original integrations

+ The values given in the tables must be multiplied by the power of ten given in parentheses.

_R. G. Herine, Thesis, Purdue University were performed using the argument 3 = (1/4/2)y
{(1961). for the isothermal case.
Table \. Tabulation of function values for isothermal temperature distribution
= (/2 F F — F 6 -

00 0-00000 0-00000 — 0-81959 1-00000 045110

02 029127 ( -~ 1) 0-19343 — 0-55366 0-87252 0:44953

0-4 0-10277 031637 — 0-32167 0-74649 0:43982

06 0-20241 037916 — 0-12965 062494 041738

08 031274 0-39415 15411 (-~ D) 0-51163 0-38179

1-0 0-42217 0-37508 011154 0-40992 033610

12 0-52297 033524 016350 0:32199 028524

14 061092 028584 0-18098 024857 023356

16 0-68454 (-23504 017528 0-18910 0-18170

1-83 0-74423 0-18791 0-15655 0-14215 0-14602

2-:0 0-79143 0-14698 0-13242 0-10584 0-11187

2:2 0-82804 011304 0-10778 078225 ( — 1) 0-84482 ( — 1)
2-4 0-85601 0-85803 ( — 1) 0-85302 ( — 1) 057486 ( — 1) 063091 ( — 1)
2:6 0-87713 064471 ( — 1) 066125 ( — 1) 042062 ( - 1) 046719 ( ~ 1)
28 0-89294 0-48063 ¢ - 1) 050471 ( ~ 1) 0-30678 ( — 1) 0-34376 ( — 1)
3-0 0-90469 0-35613 ( — 1) 0-38075 ¢ — 1) 022321 ¢ ~ 1) 025175 (— 1y
32 0-91338 0-26262 ( — 1) 0-28469 ( — 1) 016211 { — 1) 018372 ( — 1)
34 0-91977 019294 ( — 1) 0214t (- 1) C-H1758( — 1) 013372 (- 1)
36 0-92446 014133 (— 1) 015617 (— 1) 0-85206 ( — 2) 097146 { — 2)
38 092789 010328 (— ) 011489 ( — D) 061699 ( — 2) 070476 ( - 2)
40 0-93040 075333 ( — 2) 084251 (—~2) 044655 ( — 2) 051076 ( — 2)
4-5 0-93408 434026 ( — 2) 0-38407 ( —~ 2) 019871 ( — 2) 022774 ( — 2)
5-0 0-93573 0-15280 ( — 2) 017344 ( — 2) 0-88328 ( — 3) 0 10132¢ — 2)
55 093648 068373 ( — 3) 0-77880 ( — 3) 039243 (— 3) 045032 ( ~ 3
6-0 0-93681 0-30528 ( — 3) 0-34845 ( — 3) 017432 (— 3) 0-20006 ( — 3)
7-0 0-93702 0-60687 ( — 4) 069323 (— 4) 034394 ( — 4) 0-39466 ( — 4)
8-0 0-93706 0- 12115 ( — 4) 0-13735 ( — 4) 067932 ( — 5) 0-77842 ( — 35)
10-0 0-93707 0-58778 ( — 6) 0-54297 ( — 6) 027580 ( — 6) 0:30280 ( — 6)
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Table 2. Tabulation of function values for linear temperature distribution

7 F F —F” 8 —¢

0-0 0-0 0-0 — 0-72480 10 0-56699

02 0-13201 (— 1) 0-12572 — 0-53619 0-88723 0-55773

04 047926 ( — 1) 0-21603 — 0-37087 0-77793 0-53319

06 0-97567 ( — 1) 0-27568 — 022978 0-67469 0-49771

0-8 0-15648 0-30960 — 011354 0-57932 0-45510

10 0-22002 0-32274 — 021917 (- 1) 0-49290 0-40862

12 0-28452 0-31992 0-46440 ( — 1) 0-41594 0-36102

14 0-34722 0-30556 093882 ( — 1) 0-34843 0-31446

16 0-40623 0-28355 0-12350 0-28998 0-27050

1-8 0-46035 0-25712 0-13875 0-23998 0-23016

2:0 0-50895 0-22878 0-14307 0-19764 0-19400

22 0-55186 0-20041 0-13960 0-16209 0-16221

24 0-58920 0-17328 0-13101 0-13247 0-13471

2:6 062131 0-19821 0-11944 0-10794 011123

28 0-64865 0-12560 0-10648 0-87734 ( — 1) 0-91398 ( — 1)
30 067173 0-10563 093273 (— 1) 0-71165 ( — 1) 0-74801 ( — 1)
32 069107 088258 ( — 1) 0-80556 ( — 1) 0-57627 ( — 1) 061015 ( — 1)
34 0-70720 0-73343 (— 1) 0-68780 ( — 1) 0-46599 ( — 1) 0-49634 ( — 1)
36 072056 0-60667 ( — 1) 058179 ( — 1) 037638 ( — 1) 0-40284 ( — 1)
3-8 0-73160 0-49987 ( — 1) 0-48834 ( — 1) 030372 (— 1) 0-32636 ( — 1)
40 0-74067 0-41051 ( — 1) 0-40729 ( — 1) 0-24489 ( — 1) 0-26400 ( — 1)
45 0-75682 024804 ( — 1) 0-25328 ( — 1) 014262 ( — 1) 0-15461 ( — 1)
50 0-76651 014809 ( — 1) 015413 ( — 1) 0-82862 ( — 2) 0-90123 ( — 2)
55 0-77228 0-87700 ( — 2) 0-92459 ( — 2) 0-48076 ( — 2) 0-52390 ( — 2)
60 0-77569 0-51634 ( — 2) 0-54931 ( — 2) 027871 ( — 2) 0-30406 ( — 2)
70 0-77886 0-17706 ( — 2) 0-19041 ( — 2) 0-93560 ( — 3) 0-10217 ( — 2)
80 0-77994 060220 ( — 3) 0-65080 ( — 3) 0-31389 ( — 3) 034282 ( — 3)
100 0-78043 0-69534 ( — 4) 0-74570 ( — 4) 0-35379 ( — 4) 0-38557 ( — 4)

Résumé—On fait ici une étude de la convection libre laminaire autour d'un cone, a base circulaire,
non isotherme placé verticalement. On trouve qu’il existe des solutions semblables pour les équations
de couche limite quand la température de surface varie comme x?. Des solutions numériques des
équations de couche limite transformées sont données pour un nombre de Prandtl égal 4 0,7, dans
le cas de distributions de température isotherme et linéaire.

Les résultats rapportés ici sont en excellent accord avec ceux des études antérieures sur les échanges
thermiques a partir d'un cdne isotherme et les résultats expérimentaux de convection libre correspon-

dants.

Zusammenfassung—Es wird die laminare freie Konvektion an einem nichtisolierten senkrecht stehen-

den Kreiskegel untersucht. Fiir die Grenzschichtgleichungen ergeben sich Ahnlichkeitsldsungen, wenn

sich die Oberflichentemperatur nach x* dndert. Numerische Losungen der transformierten Grenz-

schichtgleichung sind sowohl bei isothermer als auch bei linearer Temperaturverteilung fiir die Prandtl-

Zahl 0,7 angegeben. Die Ergebnisse fritherer Untersuchungen des isothermen Kegels und eine experi-

mentelle Korrelation fiir laminare freie Konvektion stimmen sehr gut mit den hier ermittelten Werten
iiberein.
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AHHOTAIMA—PaccvMaTpuBaeTcs TAMHHADHAA CBOGOIHAA KOHBEKIMA TP TCILIOOGMEHe
BEPTHKAJBIO HEHM30TePMHYECHOrO IPAMOTO Kpyrosoro Xomyca. Haiigeno, wro upu
N3MEHEeHH TeMIepaTyphl TMOBEPXHOCTH, NPONOPIMOHAIBHON X", CYIIECTBYIOT TTOHOTHbLI?
peleHs YPaBHeHMIT HOIPAHHUHOTO a0, UncieHHBe pellieHud nPeodpa’oBaHIbBIX Vpan-
HeHuli TOPPAHMYHOTO CJofA Npejcraplensl anA uucia Ilpawmpras passoro 0,7, war 1
H30TEPMHUECKHX, TAK IT JITHelfHKIX pacrpenenenuit TemirepaTyphl. PesyabpTarsl TerIooiyen:
ATA UB0TEPMHYECKOTO KOHYea, HAifleHHBle HA  OCHOBE IPEeTBILYIINX  aHUTHS0B, U
Z)X{L’HCPHMEIIT&HBHOB COOTHOINEHUEe LI J'IaMIlHapHOﬁ CBOGOI.],HUFI ROHBCRHIIE XOPOHIQ o=
PUIRCYIOTCA ¢ PEBYIIBTATAMIL, NPEICTABICHHLIMI B Janioii padore.



