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A~~~-consideration is given to laminar free convection from a vertical non-isothermal right 
circular cone. Similar solutions for the boundary-Iayer equations are found to exist when the surface 
temperature varies as xn. Numericat solutions of the transformed boundary-layer equations are 
presented for Prandtl number 07, both for the isothermal and linear temperature distributions. The 
heat-transfer results of previous analyses for the isothermal cone and an experimental correlation 
for laminar free convection are found to be in excellent agreement with the results reported here. 

NOMENCLATURE 

al, a2, dimensionless constants defined by 
a,, ad. __ eauations (16-19); 

dcmensioniess constant of integra- 
tion ; 
dimensionless function defined by 
equation (12); 
dimensionless dependent variable 
defined by equation (12); 
dimensionless function defined by 
equation ( 11) ; 
acceleration due to gravity, (ft2/h); 
Grashof number, 

$L3 cos y (T - Tm)/v2; 
Grashof number based on X, 
g/3x3 cos y (T, - Tm)/v2; 
Grashof number based on L, 
gpL3 cos y (T, - Tco)vy 
Grashof number based on L, 
g/IL3 (T, - Tm)p; 
IocaI heat-transfer coefficient, 

q/(Tw - T,)(Btu/ft2 h degF); 
average heat-transfer coefficient, 
QlnL2 sin y (TO - Too), 

(Btu/ft2 h degF); 
thermal conductivity of fluid, 

(Btu/h ft degF); 
cone slant height, (ft); 

t Now, Assistant Professor of M~h~i~l Engineer- 
ing, University of Illinois, Urbana, Illinois. 

$ Professor of Mechanicat Engineering and Head of 
Department, Purdue University, Lafayette, Indiana. 

dimensionless exponent defined by 
equation (25); 
local Nusselt number, hX/k; 
average Nusselt number, AL/k; 
Prandtl number, v/a; 
local heat-transfer rate per unit 
area, (Btu/ft2 h); 
over-all heat-transfer rate, (Btu/h); 
dimensionless local cone radius; 
local cone radius, (ft); 
temperature, (degF) ; 
dimensionless velocity component 
in X-direction ; 
velocity component in X-direction, 
W/h) ; 
dimensionless velocity component 
in Y-direction; 
velocity component in Y-direction, 
(ft/h) ; 
dimensionless co-ordinate along a 
cone ray; 
co-ordinate along a cone ray, (ft); 
dimensionless co-ordinate normal 
to cone surface; 
co-ordinate normal to cone surface, 
(ft). 

Greek symbols 
=, thermal diffusivity of fluid, (ft”/h) ; 
8, coefficient of thermal expansion of 

fluid, - (~~/~~T)~, (degR-I); 
Y7 cone apex half-angle; 
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dimensionless independent variable 
defined by equation (I 1) ; 
dimensionless temperature variable, 
(T ~- T,.)/(T,, 7,): 
density of fluid, (Ib/ft”) : 
kinematic viscosity of fluid (ft$/h): 
dimensionless stream function. 

ambient conditions : 
wall conditions : 
conditions at X : L. 

INTRODUC’IION 

RECENTLY, theoretical studies of laminar free 
convection have received wider attention, especi- 
ally in cases of non-uniform surface-temperature 
distributions. Because of the difficulty in solving 
the boundary-layer equations, relatively few 
exact solutions exist. However, those which have 
been reported are derived using the technique of 
similar solutions. The similarity method is based 
on the hypothesis that velocity and temperature 
profiles at two different axial locations differ at 
most by a co-ordinate-dependent scale factor. 
By introducing a new independent variable 
consisting of a combination of the original 
variables, the boundary-layer equations reduce 
to a set of ordinary differential equations. 
Numerical integration of these yields important 
boundary-layer characteristics. The importance 
of these solutions is quite evident. In addition to 
providing results for a specific physical situation 
and contributing to a better physical under- 
standing of the phenomena, they provide a basis 
of comparison for approximate boundary-layer 
techniques. The approximate methods, once 
verified, can often be used with confidence for 
situations in which the similarity method is not 
applicable. 

Although numerous authors have investigated 
laminar free convection for the two-dimensional 
situation, this paper is concerned primarily with 
results for axisymmetric flows. Merk and Prins 
[I] developed the general relations for similar 
solutions on isothermal axisymmetric forms and 
showed that the vertical cone has such a solution. 
Approximate boundary-layer techniques were 
utilized to arrive at an expression for the 
dimensionless heat transfer. Braun et al. [2] 

contributed two more isothermal axisymmetric 
bodies for which similar solutions exist, and 
used an integral method to provide heat-transfer 
results for these and the cone over a wide range 
of Prandtl number. Results obtained by numeric- 
ally integrating the differential equations with 
Prandtl number 0.72 were also reported by these 
investigators. 

In this paper, the similar solutions obtainable 
for free convection from the vertical cone are 
exhausted. It is shown that similar solutions to 
the boundary-layer equations for a cone exist 
when the wall-temperature distribution is a 
power function of distance along a cone ray. 
Results obtained by numerically integrating the 
transformed equations for the isothermal and 
linear temperature distributions are presented 
for Prandtl number 0.7. 

ANALYSIS 

Laminar free convection on a vertical cone is 
governed by the basic conservation laws: mass, 
momentum and energy. The boundary-layer 
form of the equations for steady, axisymmetric. 
non-dissipative, constant-property flow are 

The co-ordinate system, velocity directions, and 
gravity orientation are shown in Fig. 1 for the 
case of Tw higher than T,. This is the case to 
which the present analysis is directed, although 
it is clear that upon reversal of the direction of 
gravity the results are applicable when T,, is 
lower than T,. 

As pointed out in [2], several simplifications 
have been incorporated into equations (l-3). 
Under the assumption that the boundary layer is 
thin relative to the local cone radius, the local 
radius to a point in the layer has been replaced 
with the value at the cone surface, R(X). 
Evidently, this condition is not satisfied in the 
neighborhood of the cone tip. Further, since the 
fluid-density difference, which is the driving force 
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FIG. 1. Physical model and co-ordinates. 

for natural convection, has been replaced with 
the product /3(T - Tm), the equations are 
limited to small values of this term for liquids 
but arbitrary values for gases, provided the 
products of density x viscosity and density x 
conductivity are constant across the layer. 

Finally, because the pressure gradient across 
the boundary layer has been taken as negligible, 
the equations are strictly applicable to cones of 
small apex angles. 

Complete definition of the problem requires 
specification of the boundary conditions which 
are as follows: 

U = V = 0, T = T,(X), Y = 0, 
(4) 

C’ = 0. T = T,, Y= cc. 

Introducing the following dimensionless vari- 
ables 

CTL VL 
u zzz -~ ) I!=- 

v’ i (5) v 

,fS cos y (T - Tm)L3 G = i_mpvr_ .._) 
J 

where L is the cone slant height, y the cone apex 
half-angle and G a Grashof number, equations 
(l-3) become 

(6) 

au au a2u 
uai+~-=+-G, ay aY 

?G 
xv, 

with boundary conditions 

u = z’ = 0, G = G&x), 4’ = 0, 

> 
(9) 

U = 0, G = 0, 4’ = cc. 

The continuity equation (6) is identically satis- 
fied when a dimensionless stream function /J is 
introduced; that is 

1 all/ 1 E* 
u E -- 

r aj2 Z’ = -- - --. 
r cx (10) 

If a new independent variable 17 is defined by 

Y 
rl = gJq 

and corresponding dependent variabies 

(11) 

are introduced into equations (7) and (8), the 
investigation of the existence of similar solutions 
reduces to determining the functions f(x), g(x) 
and G,(x) such that (7) and (8) are two ordinary 
differential equations for F(q) and O(T). The 
functions F’(T) and O(T) describe, respectively, 
the velocity and temperature-difference distribu- 
tions across the boundary layer. The functions 
g(x),.f (x)/g(x) and Gw represent the growth of 
boundary-layer thickness, velocity, and tempera- 
ture difference along the wall. 

Substitution of equations (11) and (12) into 
(7) and (8) yields 

F”’ + alFF” - a2F12 + a38 = 0, (13) 

0 !I f Pr(a,FB’ - a,F’8) = 0. (14) 

The boundary conditions transform to 

F'=F=O, 8= l*O, 71=0, 1 
(15) 

F’ = 0, 8 = 0, 17 = cc. _t 

In the above, the prime denotes differentiation 
with respect to 17 and a, to a4 are given by 
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fg dGw 
a4 = ., dy . 

(17) 

(18) 

(19) 

It is apparent that similar solutions are possible 
when a,, a,, a3 and a4 are constants. But, since 
the conditions embodied in equations (16-19) 
exceed the number of unknowns (f, g, G,), the 
constants are not all arbitrary. We note that the 
functionsf and g can be determined from equa- 
tions (16) and ( 17) and, with these, equation (18) 
yields Gw. The functions so determined must then 
satisfy the condition expressed by (19). Follow- 
ing this procedure, f, g and Gz, are found as 

1 
Ii (Za,-U,) 

_y(7a,-2a,) 

(22) 

provided 2a, # a2. A solution does not exist fat 
2a, = a,. The additional parameter c is an 
integration constant. In the above a,, as, a3 and 
c are arbitrary subject to the previously men- 
tioned restriction and a4 is related to a, and a, 
by the relation 

As is customary in free-convection analyses 
we arbitrarily choose a3 equal to positive unity 
and let 

c4 =1 ~~_~os Y (To - Tm) L3 = Gr 

V2 L, (24) 

where Z’O is the surface temperature at the cone 
base (X = L). For convenience, a new constant 
n defined by 

?a2 - h, 
n = za,_--a2 (25) 

is introduced. Since al/a2 is directly related to n 

by aJaz = (n + 7)/2(n + 1) it is convenient to let 
(arbitrarily) 

n+7 n+l a, = _ _._ , 
4 

a2 Z ~-~~, 
2 (26) 

which satisfies the restriction on a, and az. 
According to equation (23) a4 has the value n. 
For this selection of constants, equations (20- 
22) simplify to 

f :~ Grip x(3+1z)‘4 (27) 
g I Gr,“; x(l-s)!4 

(28) 

G, == GYLX”. (29) 

It is evident from the last of equations (5), 
equation (24) and equation (29) that similar 
solutions are possible for laminar free convection 
from a non-isothermal cone when the wall-to- 
environment temperature difference is a power 
function of the distance from the cone apex: i.e. 

Tu, - Tee ld 
T, - Ta, x ’ (30) 

where n can be zero or take on any real value. 
However, it is necessary to restrict IZ to values 
not less than zero in order to keep the surface- 
temperature distribution finite. 

The transformation variables now become 

(31) 

(T - Tm) 
e(7) = r, _ T&e- 

I 
1 

while the dimensionless velocities are 
U = Gr;i” X (1 +?t) /2 I;’ 

9 ? 

0 = t cjJ/ X(n-I)/4 i (32) 

x [(1 - n)vF’ - (7 + n)FJ. 1 

In terms of n, equations (13) and (14) are 

F”’ + 7. 4~ ” FF” __ I.;_! F’Z + 0 = 0, (33) 

0” + Pr 4 
t 

7+n 
FB’ - nF’3 

) 
= 0. (34) 

Equations (33) and (34) with boundary condi- 
tions (15) completely define the mathematical 
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problem of laminar free convection on a vertical 
cone with a power-function surface-temperature 
distribution within the framework of the simpli- 
fying assumptions. The equations contain the 
parameters; Prandtl number and n. The para- 
meter n is determined by the specification of the 
surface-temperature distribution in the form of 
equation (30). A few of the more important cases 
obtained by different choices of n are given 
below. 

Zsothermal cone (n = 0) 
The transformed equations for free convec- 

tion from an isothermal cone are obtained from 
equations (33) and (34) with n = 0. The equa- 
tions are 

et’ + : PrFe’ = 0 
1 (35) 

_j 

while the transformation variable and dimension- 
less velocities simplify to 

77 = Grl/ x--1l4y 7 

u = Gri/2 x1/2 F’ (36) 

u = + Gry x-114 (T$’ - 7F). j 

The isothermal cone was first shown, by Merk 
and Prins [ 11, to be a body yielding similar flows. 
A different choice of constants was selected by 
these investigators resulting in an analogous set 
of equations. 

Linear surface-temperature distribution (n = 1) 
For a vertical cone with a linear surface- 

temperature distribution, equations (33) and 
(34) reduce to 

F”’ + 2FF” - F’s + e = 0 1 

et’ + Pr(2Fe’ - F’e) = 0. 
j 

(37) 

The similarity variable and velocities are given 
by 

7 = Gryy -1 

u = Gr’la xF’ 
(38) 

L , v = - 2Gri14 F. 

It is interesting to note that for this case the 
similarity variable is independent of x. 

Specijed wall heat flux 
Other important values of n can be obtained 

by calculating the local surface heat flux. 
Utilizing the Fourier-Biot law of heat conduc- 
tion, the surface flux is given as follows : 

k(T, - Tm) =- 
L - 

Gri/’ x@-~)/~ 8’(O). (39) 

From the above it is evident that different sur- 
face flux distributions can be obtained by 
specifying the value of (5n - 1)/4. For example, 
choosing n = l/5 gives a constant heat flux 
surface condition for which the transformed 
equations are 

F”‘+$Ff-“_;F’2+e=O 1 

e” + Pr(z Fe’ - * Fe) = 0. 

The similarity variable and the dimensionless 
velocities for the case of constant surface heat 
flux are 

7 = Grj’ x-115 y 

1 
u = GrLi2 ~315 F’ 1 (41) 

v = + Gr;i4 X-I/~ (@’ - 9F). J 

Sparrow and Gregg [3] have dealt with the case 
of uniform surface heat flux for the vertical flat 
plate and have shown that the resulting surface 
temperature also varies with the one-fifth power 
of the distance from the leading edge. 

SOLUTION OF EQUATIONS 

The reduced equations for the isothermal cone 
(35) and the equations for the cone with a linear 
surface-temperature distribution (37) have been 
solved for Prandtl number 0.7 using numerical 
techniques. The numerical method, fourth-order 
Runge-Kutta forward integration, requires that 
at the starting point of the integration the func- 
tion and its first two derivatives be specified for 
a third-order equation; whereas, for a second- 
order equation, the function and its first deriva- 
tive must be prescribed. As is seen from the 
boundary conditions of equation (15), F”(0) and 
8’(O) are not known. Thus, the computational 
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problem reduces to a systematic search for the 
values of these derivatives which lead to solu- 
tions of the equations satisfying the end condi- 
tions F’( K ) -~ 0 and 0( cc) = 0. The details of 
the integration formulas and an iterative tech- 
nique for determining the unknown initial 
conditions are described in [4]. 

The initial value results of the numerical 
integrations are believed to be correct to at least 
five digits. In both cases, the integration was not 
considered satisfactory until the initial values 
F”(0) and 0’(O) did not change in at least the 
sixth digit upon correction by the previously 
mentioned technique. This fact, plus (a) optimiza- 
tion of the integration interval size, (b) a check 
of previously obtained results for the rotating 
disk [5], and (c) the estimated errors inherent in 
the integration method. insures that five digits 
is a conservative estimate of the accuracy of the 
initial values F”(O) and H’(0). Numerical calcu- 
lations were performed on a Datatron 204 
digital computer. Short tables of the functions 
F, F’, F”, 0, and 0’ are given in the Appendix. 

RESULTS 

Local heat transfer 
The most important result of practical interest 

is the heat transfer. It is customary to express 
heat-transfer results in terms of heat-transfer co- 
efficients and Nusselt numbers. A local heat- 
transfer coefficient and local Nusselt number 
may be defined as follows 

Utilizing the previous result for the local heat 
flux (39) we find 

Nus = - Gr!/ W(O), (43) 

where Grx is a Grashof number based on length 
X and the local wall-to-environment temperature 
difference (T,, ~ T,). 

Using the integration results for Prandtl 
number 0.7, the dimensionless heat transfer for 
the isothermal cone is 

Nu.~ = 0.45110 CT’!’ 2 2 (44) 

while for a linear surface-temperature distribu- 

Again the results of [l] show excellent agree- 
ment with a coefficient less than 1.3 per cent 
lower than that of equation (49). Furthermore, 
Jakob and Linke [6] combined the experimental 
results of numerous authors for vertical cylinders, 

tion we obtam vertical planes, horizontal wires, spheres, and 

NUX_ = 0.56699 Gr?. (45) 

Merk and Prins [1] integrated the equations 
for the isothermal vertical cone using an integral 
method. Their result when evaluated at Prandtl 
number 0.7 is in excellent agreement with that 
found here. Their coefficient in equation (44) 
was lower by less than 1.6 per cent. The numerical 
integration result of [2] for Prandtl number 0.72 
is less than 1.2 per cent greater than that found 
here when their results are transformed to the 
definitions of this paper. Braun et a/. [2] also 
noted that, although the method of Saunders 
used by Merk and Prins gave good agreement for 
Prandtl number of order unity, it was not reliable 
at extremes of Prandtl number. 

Over-all heat tramfer 
The over-all heat transfer Q is obtained by 

integrating equation (39) over the cone lateral 
surface area. So 

Q == 2xL2 sin y & qx dx, (46) 

where L is the cone slant height. Introducing the 
following definitions for a mean heat-transfer 
coefficient and Nusselt number: 

gives the dimensionless heat-transfer result 

(48) 

Upon substituting the appropriate integration 
results for Prandtl number 0.7, 

ii7u1, =- 0.51554 Gr:‘_l, 

for the isothermal cone and 

(49) 

h’u~, = 0.37799 Gr! (50) 

for the cone with a linear wall-temperature 
distribution. 



where CT; = &!%,:is(r, - Tm)Ls/v. If the gravita- 
tional. acceleration in the above relation is 
interpreted as the ~ornp~~e~t parallel to the 
body surface, evaletation OF J&h and Linke’s 
expression for Prandtl number 047 results in a 
rmmerlcal coef&ient also I*3 per cent less than 
that of equation (49). 

Also of interest is &at the ~~~t”~~~~~~ 
m&s, both local and over-all, for t&e cone with 
the linear surface-temperature distribution devil 
ate considerably from those for the isothermat 
cone. In fact, the isothermal-cone results were 
20 per cent lower and 36 per cent higher than 
the respective local and over-all Nusselt numbers 
for the non-isothermal cone, Hence, a~pl~~at~o~ 
of isot~~erma~ heat-transfer re~~t~o~ships in the 
presence of non-jso~herma~ t~rn~rat~r~ distribu- 
tions can result in ~o~~~~er~b~e error in heat- 
transfer ~al~~~Iat~o~~_ 

The tan~entja~ velocity component and Pem- 
perature profiles for both the ~~ot~errna~ and 
linear-surface-temperature Casey are shown in 
Figs. 2 and 3. The profiles exhibit the usual free- 
convection shapes. Note that the dimensionless 
tangential-flow fn~~t~on for the is~t~e~rna~ cone 
attains a maximum 22 per cent greater than that 
for the cone with a linear ~~~-temp~ratnre 
d~st~but~o~. 

It has been shown that similar so~~t~o~s to t&e 
famiuar ~~nda~-~a~r equat~ans exist for free 
convention from a vertical cone when the surface- 
temperature distribution is a power function of 
the distance from the cone apex, Numerical 
solutions of the transformed differential equa- 
tions have been presented for the isothermal and 
linear suck-temperat~e distributions with 
Prandtl number 0.7. The ~~~ro~rnate heat- 
transfer results of Merk and Prins for the iso- 
thermal cone when ~v~?~~ted for Prandtj 
number 0.7 were in exceRenr agreement with 

FIG. 3. DimensionXr;lss temperature profiles (Pr -” @7), 

those found here, The ~x~~~rne~tal ~o~relat~~n 
obtained by Jakob and Linke for the mean 
Nussett vernier in faminar jsothe~~~ free 
~onve~t~~~ when evaluated on the basis of the 
eEective ~~v~tationa~ acceleration and Rand& 
number 0~7 gave resu&s within 1.3 per cent of 



the result obtained herein for the isothermal 
cone. 
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APPENDIX 

Integration results for the functions, F, F’, F”, 
6’ and 8’ are given in Tables 1 and 2 be1ow.t The 
function values for the isothermal cone are given 
in terms of a slightly different argument than 
that used in this paper. The original integrations 
were performed using the argument +j = (l/2/2)9 
for the isothermal case. 
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Table I. Tabulation of function values for isothermal temperature distribution 
.._ -__-...~_. ___ _~_~ ~~~~ 

F F’ - f” e _. 0’ 

0.0 0~0oooo O@OOOO - 0.81959 1wOOO 

0.2 0.29127 ( .- 1) 0.19343 - 0.55366 0.87252 
0.4 0.10277 0.31637 - 0.32167 0.74649 
0.6 0.2024 I 0.37916 ~~ 0.12965 062494 
0.8 0.31274 0.39415 0.15411 f - I) 0.51163 

I.0 0.42217 @37508 O-11154 040992 
1.2 0.52297 0.33524 0.16350 0.32199 
I.4 0.61092 0.28584 0.18098 0.24857 
1.6 0.68454 0.23504 0.17528 0.18910 
I.8 0.74423 0.18791 0.15655 0.14215 
2.0 0.79143 0.14698 0.13242 0.10584 
2.2 0.82804 0.11304 0.10778 0.78225 ( -- 1) 
2.4 0.85601 0.85803 ( 1) 0.85302 ( - I) 0.57486 ( - I) 

2,6 0.87713 0.64471 f -- I) 0.66125 ( --’ I) 0.42062 ( -- 1) 
2.8 0.89294 0.48063 ( -- 1) 0.50471 ( - I) 0.30678 ( - 1) 
3.0 0.90469 0.35613 ( - I) 0.38075 ( - I) 0.22321 ( ~. 1) 
3.2 0.91338 @26262 ( ~ I) O-28469 ( - I) 0.16211 ( -- I) 
3.4 0.91977 0.19294 ( ~ 1) o-21141 ( -- I) 0.11758 ( - I) 
36 0.92446 0~14133 ( ~~ I) O-15617 ( - I) 0.85206 ( ~- 2) 

3.8 0.92789 0.10328 ( ~ I) o-11489( - 1) 0.61699 ( ~- 2) 
4.0 0.93040 0.75333 ( ~- 2) 0.84251 ( - 2) 0‘44655 ( ~ 2) 
45 o-93408 @34026 ( -- 2) O-38407 ( I- 2) 0.19871 ( - 2) 
5.0 0.93573 0.15280 ( -~ 2) 0.17344 ( - 2) 0.88328 ( -- 3) 
5.5 0.93648 0.68373 ( --~ 3) 0.77880 ( - 3) 0.39243 ( - 3) 
6.0 0.9368 I 0.30528 ( - 3) 0.34845 ( -- 3) 0.17432 ( - 3) 
7.0 0.93702 0.60687 ( - 4) 0.69323 ( - 4) 0.34394 ( - 4) 
8.0 0.93706 0.12115 ( .- 4) 0.13735 ( -- 4) 0.67932 ( -- 5) 

10.0 0.93707 0.58778 ( - 6) 0.54297 ( -.- 6) 0.27580 ( - 6) 

0.451 IO 

044953 

0.43982 

0.41738 

0.38 179 

0.33610 

0.28524 

0.23356 

0~18170 

0.14602 

0.11 I87 

0.84482 ( - I) 

0.63091 ( - 1) 

0.46719 ( -... 1) 

0.34376 ( .- I) 

0.25175 ( ..- I) 

0.18372 ( ^. I) 

0.13372 ( .’ I) 

O-97146 f -- 2) 

0.70476 ( -- 2) 

0.51076 ( -- 2) 

022774 ( - 2) 

0.10132 ( - 2) 

0.45032 ( -- 3) 

0.20006 ( - 3) 

0.39466 ( -- 4) 

0.77842 ( --.. 5) 

0.30280 ( - 6) 

i The values given in the tables must be multiplied by the power of ten given in parentheses. 
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Table 2. Tabulation of function values for linear temperature distribution 
~.-- - 

17 
~. 

0.0 

0.2 

0.4 
0.6 
0.8 

1.0 

l-2 
I.4 
1.6 

1.8 

2.0 
2.2 
2.4 

2.6 

2.8 
3,o 
3.2 

3.4 
3.6 
3.8 

4-o 
4.5 
5.0 
5.5 

6.0 
7.0 
8.0 

10.0 

- 
F F _ F” e - 8’ 

- 
0.0 0.0 - 0.72480 1.0 O-56699 

o-13201 ( - 1) 0.12572 - 0.53619 0.88723 o-55773 

0.47926 ( - 1) 0.21603 - 0.37087 0.77793 0.53319 

O-97567 ( - 1) 0.27568 - 0.22978 0.67469 0.4977 1 
0.15648 0.30960 - o-11354 0.57932 0.45510 

0.22002 0.32274 - O-21917 ( - 1) 0.49290 O-40862 

0.28452 0.31992 o-46440 ( - 1) 0.41594 0.36102 

0.34722 0.30556 0.93882 ( - 1) 0.34843 0.3 1446 
O-40623 0.28355 0.12350 0.28998 0,27050 

0.46035 0.25712 0.13875 0.23998 0.23016 
0.50895 0.22878 0.14307 o-19764 0.19400 
0.55186 0,2004 1 o* 13960 O- 16209 0.16221 
0.58920 0.17328 0.13101 O-13247 0.13471 

Oa62131 0.19821 0.11944 0.10794 0.11123 

0.64865 0.12560 0.10648 O-87734 ( - 1) 0.91398 ( - 1) 
0.67173 0.10563 0.93273 ( - 1) 0.71165 ( - 1) 0.74801 ( - 1) 

0.69107 0.88258 ( - 1) 0.80556 ( - 1) O-57627 ( - 1) 0.61015 ( - 1) 
0.70720 0.73343 ( - 1) 0.68780 ( - 1) 0.46599 ( - 1) 0.49634 ( - 1) 
0.72056 0.60667 ( - 1) 0,58179 ( - 1) 0.37638 ( - 1) 040284 ( - 1) 
0.73160 0.49987 ( - 1) 0.48834 ( - 1) 0.30372 ( - 1) 0.32636 ( - 1) 
0.74067 0.41051 ( - 1) 0.40729 ( - 1) 0.24489 ( - 1) 0~26400 ( - 1) 
0.75682 0.24804 ( - 1) 0.25328 ( - 1) 0.14262 ( - 1) 0.15461 ( - 1) 
0.76651 0.14809 ( - 1) 0.15413 ( - 1) 0.82862 ( - 2) 0*90123 ( - 2) 
0.77228 0.87700 ( - 2) 092459 ( - 2) 0.48076 ( - 2) 0.52390 ( - 2) 

0.77569 0.51634 ( - 2) o-54931 ( - 2) 0.27871 ( - 2) 0.30406 ( - 2) 
0.77886 0.17706 ( - 2) 0.19041 ( - 2) 0.93560 ( - 3) 0.10217 ( - 2) 
0.77994 060220 ( - 3) 0.65080 ( - 3) 0.31389 ( - 3) 0.34282 ( - 3) 

0.78043 0.69534 ( - 4) 0.74570 ( - 4) 0.35379 ( - 4) O-38557 ( - 4) 

R&urn&On fait ici une etude de la convection Iibre laminaire autour d’un cone, g base circulaire, 
non isotherme place verticalement. On trouve qu’il existe des solutions semblables pour les equations 
de couche limite quand la temperature de surface varie comme x a. Des solutions numeriques des 
equations de couche limite transformees sont donnees pour un nombre de Prandtl tgal ti 0,7, dans 
le cas de distributions de temperature isotherme et lintaire. 

Les r&hats rapport& ici sont en excellent accord avec ceux des etudes anterieures sur les tchanges 
thermiques & partir d’un cone isotherme et les resultats experimentaux de convection libre correspon- 

dants. 

Zusammenfassung-Es wird die laminare freie Konvektion an einem nichtisolierten senkrecht stehen- 
den Kreiskegel untersucht. Fur die Grenzschichtgleichungen ergeben sich Ahnlichkeitsliisungen, wenn 
sich die Oberfliichentemperatur nach xn iindert. Numerische Lijsungen der transformierten Grenz- 
schichtgleichung sind sowohl bei isothermer als such bei linearer Temperaturverteilung fur die Prandtl- 
ZahlO,7 angegeben. Die Ergebnisse friiherer Untersuchungen des isothermen Kegels und eine experi- 
mentelle Korrelation fur laminare freie Konvektion stimmen sehr gut mit den hier ermittelten Werten 

tiberein. 
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